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Abstract. Itis shown that the critical exponegt related to pair-connectiveness and shortest-path
(or chemical distance) scaling, recently studied by Pettal, Dokholyanet al and Grassberger,

can be found exactly in two dimensions by using a crossing-probability result of Cardy, with the
outcomeg; = 25/24. This prediction is consistent with existing simulation results.

1. Introduction

An important quantity describing percolation clusters is the chemical distance or shortest
path [1]. There has been considerable effort studying its scaling properties for distances small
compared with the size of the cluster (i.e., [2—4]) including recent work by Rodb[5] and
Dokholyanet al [6, 7]. Very recently, Grassberger [8] has shown that these scaling properties
can be analysed efficiently by studying the growth of two nearby clusters, a method first
suggested in the work of Dokholyaat al [6]. In this note | show that a scaling relation for
the growth of two clusters [6] can be combined with a previous result of Cardy [9] to find an
exponent of the shortest-path behaviour exactly.

In[8], Grassberger considered the functiétr) (which | call N (¢)) giving the probability
that two clusters grown from nearby seeds survive to at leastrtimbere clusters are grown
by a Leath-type algorithm [10] and wherds the number of generations or, equivalently,
the chemical distance from the seeds to the growth sites. (To survive up to that time means
that both clusters survive and remain distinct.) Another interpretatidvy @f is that it gives
the probability that two sites appear to belong to two different infinite clusters, when the
environment is probed up to a chemical distanfrem the two sites. (As discussed in [8], two
points a finite distance apart in fact belong to two different infinite clusters with probability
zero.) At the critical pointN»(¢) is presumed to behave as a power law

No(t) ~ 7 1)

ast — oo. Grassberger also considered the probabpity) that the two clusters coalesce
exactly at time; p(¢) is proportional tao (x — vy, 2¢t), wherezx andy are the locations of the
seed points angd(x, ) is the pair-connectiveness function, which behaves as [11,12]

1 z
oz, 1) ~ m¢(”/¢ ) )
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in the scaling limit. The scaling functiop(¢) is presumed to behave a& for ¢ — 0 [5],
so p(x,t) ~ ré for constantt > rY/*. Grassberger showed that these arguments imply
p(t) ~ t=* with

2
A=1+—ﬁ+zg1 (©))

Vi
and furthermore argued that= 1 — 1. The relation (3) was first given (in a slightly different
notation) by Dokholyaret al [6].
Based upon an analogy to self-avoiding random walks, Reréb[5] conjectured thag,
is related talnin = 1/z = v, /v by

g1 =dmin — B/v (conjecturg 4)

which they found to be supported, to within th&% error bars, by numerical measurements.
This conjecture also appears in [6, 7]. Inserting equation (4) into equation (3) implies

A=2+ L (conjecture. (5)

Vt
However, from precise simulations ¢f(z) and N»(¢), Grassberger found strong numerical
evidence against the above conjecture (and provided theoretical arguments against it as well).
He found, in two dimensions,

1 = 1.105510) A = 2.105510) g1 = 1.041(1) (6)

which are numerically inconsistent with the predictipns- 1.092 135) andg; = 1.0264(3)
that follow from equations (4) and (5) and the known valyes= 2, v = 3, and
dmin = 1.13063) [8], where numbers in parentheses following numerical data represent
statistical errors in the last digit(s).

Here | show thag; can be found exactly by relating,(z) to a crossing problem solved
recently by Cardy [9]. Cardy has shown that for a rectangular system of dimerisiong.,,
with periodic boundary conditions in the vertical direction, the probability of having atteast

clusters cross in the horizontal direction behaves, for large aspecRratid., /L, as

Pi(R) ~ e % @)
with a; = 57/24 anda; = (2/3)(k* — 1/4) for k > 1. (The formula fork = 1 is different
because for one cluster it is not necessary to also have a crossing cluster on the dual lattice,
while fork > 1 crossing clusters there mustiberossing dual-lattice clusters.) The probability
that at least two clusters (or, to the same orebeactlytwo clusters) cross the rectangle is given
by P, ~ exp(—57 R/2).

Crossing problems in critical percolation are believed to be conformally invariant, because
under a conformal transformation, in which all elements only expand or contract, the crossing
properties of each element should remain unchanged [13,14]. One can transform the rectangle
into an annulus by putting the four corners of the rectangte 2t0, 27 R, 27 R + 2ri and
27i on the complex: plane, and letting’ = €. The result on the’-plane is an annulus
with an inner radius of 1 and an outer radiusrof= €"%. The top and bottom edges of
the rectangle close together, exactly matching the periodic boundary conditions. Assuming
conformal invariance of the crossing probability, it follows from (7) that the probakglity
that at leask clusters cross between the inner and outer boundaries of the annulus is given by

pi(r) ~ /e (8)
or p1(r) ~ r=%8, po(r) ~ r=%4 pa(r) ~ r=3%12 etc. Now, one can associgig(r) with the
quantity N»(¢) of equation (1) by transforming from chemical distant¢e the radial distance
r usingr ~ t*. This yields

No(t) ~ t7>/4 (9)



Letter to the Editor L459

which implies by (1)

SZ 51),
= —=— =110563 10
w=g =1 63) (10)
and by (3) gives
5 28 25
=--—=—=1041 11
1= 7, = g~ Lo4lbee (11)

These predictions are consistent with Grassberger's measurements (6) as well &t &'srto
determinatiory; = 1.04(5). However, (11) is apparently inconsistent with the conjecture (4),
since it would imply

5 B 55

dmin = yiiaT 1.1458333.. (conjecture (12)

which differs from the measured valuesdafi,, 1.1306(3) [11] and 1.130(4) [15].

Another way of looking at Grassberger's numerical results is that they serve to confirm
the ideas of conformal invariance and Cardy’s formula&og 2 to high precision. Note
that Cardy’s formula fok = 1,2 and 3 has also been verified numerically by Shchur and
Kosyakov [16—18]. Indeed, equation (9) can be generalized for the probatjjlity thatk
clusters remain alive and distinct up to time

Nk([) ~ pk(tz) ~ t—zak/(zﬂ) (13)
S0 thatNa(r) ~ r~3%/12 ~ 12580 etc. Grassberger has also measured this quantity$o8
andk = 4, and the behaviour he finds is consistent with the above predictions [19].

I note, finally, that the relatiop () ~ 52 following (8) is just the statement that the

probability a cluster grows to a radius greater or equal thampi(r) ~ r?~¢. The latter

formula follows fromP-, = f€°° sng ~ s277 with s = r2 with D = Z—é, and the hyperscaling

relationt —1=4d/D. Transfbrming from the annulus to a rectangle yields Cardy’s result (7)
fork = 1, P1(R) ~ e %"@=DIR (yalid ford = 2 only).

Inconclusion, | have shown that the density of growth sites on two-dimensional percolation
clusters behaves a$%?* for large time and smal.

The author thanks P Grassberger, J Cardy and S Havlin for comments. This material is based
upon work supported by the US National Science Foundation Grant No DMR-9520700.
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