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Abstract. It is shown that the critical exponentg1 related to pair-connectiveness and shortest-path
(or chemical distance) scaling, recently studied by Portoet al, Dokholyanet al and Grassberger,
can be found exactly in two dimensions by using a crossing-probability result of Cardy, with the
outcomeg1 = 25/24. This prediction is consistent with existing simulation results.

1. Introduction

An important quantity describing percolation clusters is the chemical distance or shortest
path [1]. There has been considerable effort studying its scaling properties for distances small
compared with the size of the cluster (i.e., [2–4]) including recent work by Portoet al [5] and
Dokholyanet al [6,7]. Very recently, Grassberger [8] has shown that these scaling properties
can be analysed efficiently by studying the growth of two nearby clusters, a method first
suggested in the work of Dokholyanet al [6]. In this note I show that a scaling relation for
the growth of two clusters [6] can be combined with a previous result of Cardy [9] to find an
exponent of the shortest-path behaviour exactly.

In [8], Grassberger considered the functionN(t) (which I callN2(t)) giving the probability
that two clusters grown from nearby seeds survive to at least timet , where clusters are grown
by a Leath-type algorithm [10] and wheret is the number of generations or, equivalently,
the chemical distance from the seeds to the growth sites. (To survive up to that time means
that both clusters survive and remain distinct.) Another interpretation ofN2(t) is that it gives
the probability that two sites appear to belong to two different infinite clusters, when the
environment is probed up to a chemical distancet from the two sites. (As discussed in [8], two
points a finite distance apart in fact belong to two different infinite clusters with probability
zero.) At the critical point,N2(t) is presumed to behave as a power law

N2(t) ∼ t−µ (1)

as t → ∞. Grassberger also considered the probabilityp(t) that the two clusters coalesce
exactly at timet ; p(t) is proportional toρ(x− y, 2t), wherex andy are the locations of the
seed points andρ(x, t) is the pair-connectiveness function, which behaves as [11,12]

ρ(x, t) ∼ 1

t1+2β/νt
φ(r/tz) (2)
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in the scaling limit. The scaling functionφ(ζ ) is presumed to behave asζ g1 for ζ → 0 [5],
so ρ(x, t) ∼ rg1 for constantt � r1/z. Grassberger showed that these arguments imply
p(t) ∼ t−λ with

λ = 1 +
2β

νt
+ zg1 (3)

and furthermore argued thatµ = λ− 1. The relation (3) was first given (in a slightly different
notation) by Dokholyanet al [6].

Based upon an analogy to self-avoiding random walks, Portoet al [5] conjectured thatg1

is related todmin = 1/z = νt/ν by

g1 = dmin − β/ν (conjecture) (4)

which they found to be supported, to within the≈5% error bars, by numerical measurements.
This conjecture also appears in [6,7]. Inserting equation (4) into equation (3) implies

λ = 2 +
β

νt
(conjecture). (5)

However, from precise simulations ofp(t) andN2(t), Grassberger found strong numerical
evidence against the above conjecture (and provided theoretical arguments against it as well).
He found, in two dimensions,

µ = 1.1055(10) λ = 2.1055(10) g1 = 1.041(1) (6)

which are numerically inconsistent with the predictionsµ = 1.092 13(5) andg1 = 1.0264(3)
that follow from equations (4) and (5) and the known valuesβ = 5

36, ν = 4
3, and

dmin = 1.1306(3) [8], where numbers in parentheses following numerical data represent
statistical errors in the last digit(s).

Here I show thatg1 can be found exactly by relatingN2(t) to a crossing problem solved
recently by Cardy [9]. Cardy has shown that for a rectangular system of dimensionsLv ×Lh,
with periodic boundary conditions in the vertical direction, the probability of having at leastk

clusters cross in the horizontal direction behaves, for large aspect ratioR = Lh/Lv, as

Pk(R) ∼ e−akR (7)

with a1 = 5π/24 andak = (2π/3)(k2 − 1/4) for k > 1. (The formula fork = 1 is different
because for one cluster it is not necessary to also have a crossing cluster on the dual lattice,
while fork > 1 crossing clusters there must bek crossing dual-lattice clusters.) The probability
that at least two clusters (or, to the same order,exactlytwo clusters) cross the rectangle is given
by P2 ∼ exp(−5πR/2).

Crossing problems in critical percolation are believed to be conformally invariant, because
under a conformal transformation, in which all elements only expand or contract, the crossing
properties of each element should remain unchanged [13,14]. One can transform the rectangle
into an annulus by putting the four corners of the rectangle atz = 0, 2πR, 2πR + 2π i and
2π i on the complex-z plane, and lettingz′ = ez. The result on thez′-plane is an annulus
with an inner radius of 1 and an outer radius ofr = e2πR. The top and bottom edges of
the rectangle close together, exactly matching the periodic boundary conditions. Assuming
conformal invariance of the crossing probability, it follows from (7) that the probabilitypk
that at leastk clusters cross between the inner and outer boundaries of the annulus is given by

pk(r) ∼ r−ak/(2π) (8)

orp1(r) ∼ r−5/48,p2(r) ∼ r−5/4,p3(r) ∼ r−35/12, etc. Now, one can associatep2(r)with the
quantityN2(t) of equation (1) by transforming from chemical distancet to the radial distance
r usingr ∼ t z. This yields

N2(t) ∼ t−5z/4 (9)
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which implies by (1)

µ = 5z

4
= 5νt

4ν
= 1.1056(3) (10)

and by (3) gives

g1 = 5

4
− 2β

ν
= 25

24
= 1.041 666. . . . (11)

These predictions are consistent with Grassberger’s measurements (6) as well as Portoet al’s
determinationg1 = 1.04(5). However, (11) is apparently inconsistent with the conjecture (4),
since it would imply

dmin = 5

4
− β
ν
= 55

48
= 1.145 833 3. . . (conjecture) (12)

which differs from the measured values ofdmin, 1.1306(3) [11] and 1.130(4) [15].
Another way of looking at Grassberger’s numerical results is that they serve to confirm

the ideas of conformal invariance and Cardy’s formula fork = 2 to high precision. Note
that Cardy’s formula fork = 1, 2 and 3 has also been verified numerically by Shchur and
Kosyakov [16–18]. Indeed, equation (9) can be generalized for the probabilityNk(t) thatk
clusters remain alive and distinct up to timet ,

Nk(t) ∼ pk(tz) ∼ t−zak/(2π) (13)

so thatN3(t) ∼ t−35z/12 ∼ t−2.580, etc. Grassberger has also measured this quantity fork = 3
andk = 4, and the behaviour he finds is consistent with the above predictions [19].

I note, finally, that the relationp1(r) ∼ r−5/48 following (8) is just the statement that the
probability a cluster grows to a radius greater or equal thanr is p1(r) ∼ rD−d . The latter
formula follows fromP>s =

∫∞
s
sns ∼ s2−τ with s = rD with D = 91

48, and the hyperscaling
relationτ − 1= d/D. Transforming from the annulus to a rectangle yields Cardy’s result (7)
for k = 1,P1(R) ∼ e−2π(d−D)R (valid for d = 2 only).

In conclusion, I have shown that the density of growth sites on two-dimensional percolation
clusters behaves asr25/24 for large time and smallr.

The author thanks P Grassberger, J Cardy and S Havlin for comments. This material is based
upon work supported by the US National Science Foundation Grant No DMR-9520700.
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